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Abstract

This paper investigates the advantages of introducing
feedback between the processes of automated medical di-
agnosis and automated diagnostic-knowledge acquisition.
Ezperimental results show that a diagnostic system with
such feedback is capable of an efficiency/accuracy trade-
off when applied to the problem of diagnosing multiple
disorders.

A primary feature of this work is a new mechanism,
called the “diagnostic-unit” representation, for remem-
bering results of previous diagnoses. The diagnostic-unit
representation is explicitly tailored to capture the most
likely relationships between disorders and clusters of find-
ings. Unlike typical bipartite “If-Then” representations,
the diagnostic-unit representation uses a general graph
representation to efficiently represent complex causal re-
lationships between disorders and clusters of findings.

In addition to the basic diagnostic-unit concept, this
paper presents experience-based strategies for incremen-
tally deriving and updating diagnostic units and the var-
tous relationships between them. Techniques for select-
ing diagnostic units relevant to a given problem and then
combining them to generate solutions are also described.

1 Introduction

This paper addresses three interdependent problems;
1) the diagnosis problem, in particular, the problem of
efficiently identifying the most likely causal events for
a given body of evidence, 2) the knowledge acquisition
problem, in particular, the problem of acquiring knowl-
edge about the context sensitivity of findings that fa-
cilitates the recognition of finding patterns relevant to
a problem, and 3) the problem of representing such
domain-structure knowledge.

Contributions: The contribution of this work is two-
fold. One contribution is the development of new meth-
ods for solving problems in complex diagnostic domains.
Classical techniques for diagnosis include association-
based and causal-model-based reasoning. In general, an
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association-based reasoning system can solve problems
efficiently, but is fragile in the sense that it is only good
at solving familiar, prespecified problems [1, 10]. Con-
versely, a causal-model-based reasoning system can solve
not only familiar but also unfamiliar problems from first
principles, but is slow [7, 9, 12]. This work is motivated
by the desire to develop a diagnostic technique whose effi-
ciency is comparable to that of association-based reason-
ing but with robustness which approaches that of causal-
model-based reasoning. This work shows that such a sys-
tem is in fact possible, by combining association-based
and causal-model-based reasoning.

Another contribution would be in automating the ac-
quisition of knowledge about domain structure. It helps
enhance one’s understanding of the structure inherent
in the diagnosis domain, by automatically discovering
knowledge that identifies the structure of a problem.

Basic approach: The basic approach is the introduc-
tion of feedback between the processes of problem solv-
ing and knowledge acquisition. The introduction of such
feedback results in a hybrid system that generates hy-
potheses to account for a given body of evidence, ana-
lyzes the results of the diagnosis, and incorporates their
key features into an experiential knowledge base which,
in turn, assists future diagnosis.

This research uses experience to automatically ac-
quire domain-structure knowledge which allows decom-
positional abductive diagnosis to be done efficiently and
effectively. For an intuitive understanding of decomposi-
tional abductive diagnosis, suppose that findings fi, f2,
..., Jn are given for diagnosis. One reasonable question
to ask is “Can we group these findings into relatively in-
dependent subsets of findings for which the most likely
explanations can be immediately inferred?” In other
words, can we solve this problem by decomposition and
abduction? If so, a diagnostic solution to the original
problem can be generated quickly, by combining partial
solutions to the subsets of findings, where each partial
solution represents a disorder that explains part of the
overall malfunction.

Problem decomposition allows a complex problem to
be solved efficiently, by simplifying it into subproblems.
Abduction also allows efficient problem solving, by avoid-
ing reasoning step-by-step from first principles. It is the
potential efficiency that motivates the use of decomposi-
tion and abduction for multidisorder diagnosis. Decom-
positional techniques are efficient, however, only when
a problem is decomposed correctly. Unfortunately, the
task of finding a correct decomposition for diagnosis is a
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difficult task, for there are exponentially many ways of
decomposing a given set of findings. Similarly, abduction
is an effective technique for solving the diagnosis problem
only when all known causal relations are most likely. In
light of these observations, this research attempts to ex-
plicitly represent knowledge about the context sensitivity
of the conclusions that can be drawn from findings. Such
knowledge provides guides for decomposing a given set of
findings and also can be formulated to capture only the
most likely causal relations.

This paper describes techniques designed to address
the issues of how to represent, and efficiently use, knowl-
edge about the context sensitivity of findings, and of how
to automatically acquire, from experience, such knowl-
edge in the representation that will be described in Sec-
tion 3.

Related Work: What to learn is not independent of
the goals of problem solving. In the light of the interre-
lationship between problem solving and learning, systems
such as SOAR coupled learning to problem solving. SoAR
is a rule-based general-purpose problem-solving system
which is integrated with explanation-based learning [8].

Another general purpose problem-solving
system that incorporates several learning mechanisms is
PRrODIGY [11]. Much of learning in PRODIGY is directed
at automatically acquiring control rules from experience
to improve efficiency of a search process.

CASEY [6] is a diagnostic system that stores each
solved case individually as an independent atom for use in
later diagnosis. It bases diagnosis on comparison-based
case-based reasoning which directly inspects old cases
and transfers an entire solution of the best matching old
case to a new case.

1.1 Diagnostic Problems

Input: Diagnostic problems are represented in the form
of a set of findings. Findings include the history of a
patient, subjective symptoms such as a patient’s com-
plaints, physical examination, and objective signs re-
vealed either by observations or by various special labo-
ratory tests.

Output: A diagnosis consists of not only the disorders
primarily suspected of causing a given set of findings,
but also an underlying pathophysiologic mechanism that
explains how these disorders are producing all of the find-
ings in the set. It is important to provide a underlying
pathophysiologic mechanism, particularly when interme-
diate links within the causal chain are important deter-
minants in the appropriate therapy for the patient. In
addition, without a pathophysiologic mechanism that ex-
plains how findings are related to their primary suspected
disorders, it is difficult to determine whether the results
of a diagnosis “make sense” or are little more than ran-
dom guesses.

This research uses a general graph notation to repre-
sent causal explanations for findings. An example of this
representation is shown in Figure 1. Each black rect-

Figure 1: An example of a causal explanation

angular node represents an elemental disorder. Elemen-
tal disorders are either pathophysiologic states defined
at a level needed for differential diagnosis or pathophys-
iologic states that do not require any further causes [9].
Oval nodes represent intermediate states. Intermediate
states are the rest of pathophysiologic states. Rectangu-
lar nodes represent findings. Links are causal links that
represent direct causal relations between the clinical enti-
ties represented by the corresponding nodes. The causal
graph shown in Figure 1 represents a causal explanation
with the elemental disorders producing the findings via
the intermediate states identified in the graph. The same
set of findings can be explained in many ways. The main
driving force of this research is the question “How can
we efficiently find causal graphs that represent the most
likely causal explanations for a set of findings?”

1.2 Guide to the Paper

The remainder of this paper is organized as follows. Sec-
tion 3 describes methods designed to transform experi-
ences (observations about diagnoses) to knowledge (gen-
eral problem-solving rules for decompositional abductive
diagnosis), while Section 4 describes techniques for using
such experiential knowledge to solve diagnostic problems.
The efficiency and effectiveness of these techniques are
tested in the domain of heart failure diagnosis, by imple-
menting a computer system called HYD1. An evaluation
of HYDI’s performance is presented in Section 5.

2 HYDI

To facilitate discussion, this section presents an overview
of the system Hyp1. HYDI diagnoses multiple disorders,
and automatically acquires knowledge about the context
sensitivity of findings from its own problem-solving ex-
perience. It performs diagnosis based on the multifault
assumption without assuming that disorders are indepen-
dent. HYDI also combines causal-model-based reasoning
and association-based reasoning in an effective fashion.

Architecture of HYDI: The problem-solving compo-
nent of HYDI consists of the causal-model-based problem
solver, cMs, and the association-based problem solver,
As. The intention is to take advantage of the robust-
ness of causal-model-based reasoning and the efficiency
of association-based reasoning. Since the focus of this
research is not on the specifics of causal-model-based
reasoning, this research reuses an existing probabilistic
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causal-model-based system, HF, as cMs. HF [9] is a prob-
abilistic causal-model-based system for heart failure diag-
nosis. A decompositional abductive diagnosis approach,
which is the main topic of this research, is used for As.

Hyp1 has two knowledge bases. One is the causal
knowledge base, Kcus, that contains domain causal
knowledge. It is used mainly by cMs. The other is the as-
sociative knowledge base, K,s, in which knowledge about
the context sensitivity of findings is stored for use by As.
HyDI’s problem-solving “flow” is as follows: Given a di-
agnostic problem, As first tries to generate acceptable
solutions to the problem. If it fails, then the more robust
CMs solves the problem.

Whenever a diagnostic problem is solved, the results
of the diagnosis (specifically, the most likely causal ex-
planations for the given set of findings) are analyzed and
incorporated into K,s by a knowledge incorporation pro-
cess, for AS’s use in future diagnosis.

3 Transformation of Experi-
ence to Knowledge

This research uses experience to acquire diagnostic con-
trol knowledge for guiding decompositional abductive di-
agnosis. The issue of how to remember experience for use
in later diagnosis must be addressed. More specifically,
one needs to decide whether to treat each solved case as
“atomic” or decomposable. A typical approach taken in
most existing case-based systems [2, 5, 13] is to store each
solved case individually as an independent atom. While
easy to implement, storing cases in this way can limit the
reusability of previous cases in future problem solving, by
reducing the possibility of finding matches - particularly
when only parts of cases match. It may also result in in-
efficient use of memory space, because even very similar
cases are stored separately. In an attempt to deal with
these difficulties, this research attempts to store solved
cases in a “decomposed-and-merged” form, by analyzing
results of diagnoses with respect to disorders.

3.1 Diagnostic-Unit Representation

The diagnostic-unit representation is a new mechanism
that forms a basis for storing components of decomposed
cases. In most medical domains, the significance of a find-
ing depends on other findings that occur together with
it. As a consequence, changing some findings may even
require findings which remain the same to be explained
differently. The diagnostic-unit representation seeks to
capture this context-sensitivity of findings, by explicitly
representing disorders and sets of findings that are in
the most likely causal relation as units. Unlike typical
bipartite “If-Then” representations, the diagnostic-unit
representation uses a general graph representation to ef-
ficiently represent more complex causal relationships be-
tween disorders and sets of findings. The diagnostic-unit
representation consists of two building blocks: diagnostic
units and links between them.

Diagnostic units: A diagnostic unit is a causal graph,
with a single elemental disorder root, such that previ-
ous experiences “indicate” that the causal explanation
identified by the graph can be immediately inferred to
be the most likely causal explanation for the findings
in the graph. For example, Figure 2 shows a diagnostic
unit rooted at chronic mitral regurgitation. The diagnos-
tic unit represents that experiences so far indicate that
chronic mitral regurgitation and the underlying causal
mechanism identified in the graph are believed to be
the most likely causal explanation for the findings in the
graph.
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Figure 2: An example of a diagnostic unit

Diagnostic units are designed to identify diagnostic con-
texts in which approximate optimality is implied. A di-
agnostic context represents that when all of the findings
identified in a diagnostic unit occur together, the disor-
der and underlying causal mechanism identified in the
diagnostic unit can be concluded as a diagnosis for the
findings. A diagnostic unit is approximately optimal if,
according to past experience, the disorder and underlying
mechanism identified in the diagnostic unit are believed
to be the most likely diagnosis for the findings.

Diagnostic-unit sets: It is not uncommon in medical
domains that different sets of findings can suggest the
same elemental disorder via different underlying patho-
physiologic mechanisms, thus corresponding to different
diagnostic units. In light of the possibility that an el-
emental disorder can be associated with more than one
diagnostic unit, a diagnostic-unit set for an elemental dis-
order is defined.

Links between diagnostic units: Two types of links
are defined to represent relationships between diagnostic
units. One type of link is called a causal-relation link. A
causal-relation link represents a causal dependency be-
tween diagnostic units. The other type of link is called
a non-causal relation link, and represents a dependency
between diagnostic units which are not causally related
but share common nodes.

DOC Graphs: Knowledge represented in the
diagnostic-unit representation can be conceptualized as
a graph where each node represents a diagnostic-unit set
and each link represents a relationship between diagnos-
tic units in different diagnostic-unit sets. Such a graph
is called a diagnostically-operative causal graph, or DOC
graph.

Detailed formal definitions of diagnostic units, of links
between diagnostic units, and of DOC graphs can be found
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in [3].

3.2 Knowledge Incorporation Process

This subsection addresses the issue of how to acquire di-
agnostic units and various relationships between them.
One approach would be manual compilation by inter-
viewing expert physicians. It is, however, expensive and
time-consuming. In an attempt to deal with difficulties
of manual compilation, this research seeks to automati-
cally acquire diagnostic units and relationships between
them, by analyzing HYDI’s own diagnostic experience.

The knowledge incorporation process assimilates new
diagnostic solutions into the existing associative knowl-
edge base, K,s, of HYDI. This research assumes that K s
is initially empty. In other words, no diagnostic units are
known a priori. As diagnostic problems are solved, diag-
nostic units and relationships between them are discov-
ered and updated in K,s for use in later diagnosis. This
is done by the knowledge incorporation process that con-
sists of the “DoOC transformation process” followed by the
“joining-up process.”

3.2.1 DOC Transformation Process

The DOC transformation process constructs DOC graphs
for new diagnostic solutions. Given a new solution, it
first compiles diagnostic units from a new diagnostic so-
lution by collecting, for each elemental disorder in the
diagnostic solution, all nodes and causal links in the di-
agnostic solution that are reachable from the elemental
disorder. For example, suppose that a diagnostic prob-
lem is solved, and the causal graph in Figure 1 is gener-
ated as the mostly likely causal explanation for the prob-
lem. Then, the two diagnostic units rooted at d; and d,
respectively, can be compiled from this diagnostic solu-
tion. While there is no causal path between d; and d;
in the diagnostic solution, the two diagnostic units share
a common node i3, allowing a non-causal relation link
between them to be established. Figure 3 shows the boc
graph of the diagnostic solution in Figure 1.

/7 \ Non-causa!
i_Relation |
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Figure 3: A poc graph for the solution in Figure 1

3.2.2 Joining-Up Process

The joining-up process incorporates newly acquired boc
graphs into K,s. A fundamental issue that must be ad-
dressed by the joining-up process is whether a new di-
agnostic unit should be used to update an existing diag-
nostic unit in K,s or be considered to be a new element

of the corresponding diagnostic-unit set. This merging
issue is addressed with a merging threshold. If two diag-
nostic units are a “partial recovery” of the same diagnos-
tic unit, then they are likely to have a similar underlying
structure. Two diagnostic units are merged to produce
a combined whole if they have the roots representing the
same elemental disorder and the underlying structure of
the two diagnostic units match by more than certain per-
centage, i.e., the merging threshold.

The joining-up process also performs bookkeeping for
use in later diagnosis, updating statistics such as how fre-
quently a diagnostic unit has occurred so far. In addition,
dependencies between diagnostic units are also updated
in K AS-

4 Decompositional Abductive
Diagnosis

The previous section addressed the problem of how to
acquire and represent knowledge about the context sen-
sitivity of findings associated with particular disorders.
This section addresses the issue of how to use such ex-
periential knowledge for efficient and effective decompo-
sitional abductive diagnosis.

Decompositional abductive diagnosis can be viewed as
a two-stage process. The first stage is the grouping of a
given body of evidence into subproblems. The basic ap-
proach is to find relevant diagnostic units based on an ap-
proximate technique called “deep matching adaptation.”
The second stage is to construct a diagnostic solution to
the problem, from the relevant diagnostic units selected
by the preceding evidence-grouping process.

4.1 Evidence-Grouping Process

The macro-finding captured in each diagnostic unit, as a
whole, represents a clinical indicator that the specified set
of findings strongly supports the existence of the disorder
and underlying pathophysiologic mechanism identified in
the diagnostic unit. In other words, diagnostic units pro-
vide guides for decomposing a set of findings into smaller,
immediately solvable subsets. In the diagnostic-unit rep-
resentation paradigm, therefore, the grouping of given
evidence becomes a search for relevant diagnostic units.
This research addresses the issue of how to determine
relevant diagnostic units, by matching diagnostic units
against the given evidence.

A common matching method is to simply count the
number of findings that match on the surface. While
easy to implement, this matching method, called “simple
matching” in this research, is only effective when cases
that are similar on the surface occur frequently. Unfortu-
nately, in such medical domains as heart failure, patients
with the exact same findings rarely occur. Since diagnos-
tic units used in this paper are acquired from experiences,
knowledge captured in diagnostic unit is generally incom-
plete. Simple matching thus appears to be less suitable
for use in medical diagnosis. The issue is how to trans-
late or adapt existing diagnostic units so that they match
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a new problem. To address this issue, this research in-
vestigates deep matching adaptation. A key feature of
deep matching adaptation is that it considers not only
similarity in appearance but also similarity in underly-
ing causality.

The issue that arises in matching a diagnostic unit
against a diagnostic problem is what to do with findings
that are unmatched on the surface. There are two kinds
of unmatched findings. One is unmatched findings in a
diagnostic unit, and the other is unmatched findings in
a diagnostic problem. Since unmatched unit findings are
not known to a patient, they have no effect on the pa-
tient’s state. In light of this observation, this thesis han-
dles unmatched unit findings by removing them from the
diagnostic unit. Such removal can invalidate the diagnos-
tic unit, however. The issue regarding the validity of a
diagnostic unit is addressed in the succeeding hypothesis-
construction process. For unmatched problem findings,
this thesis checks to see if they can be explained by the
diagnostic unit. To this end, a technique called “causal
accounting” is investigated.

Causal accounting: Causal accounting is a simple
method for tailoring diagnostic units based on underlying
causality of findings. It allows an unmatched finding in a
diagnostic problem to be added to a diagnostic unit (and
treated as a matching finding), if there exists in the di-
agnostic unit a pathophysiologic state which can directly
cause the unmatched problem finding: Such a pathophys-
iologic state in the diagnostic unit is referred to as an “ac-
counting state” of the unmatched problem finding. For
example, suppose that the diagnostic unit in Figure 2 is
being matched against a diagnostic problem which con-
sists of systolic ejection murmur, high BUN, high crea-
tinine, and orthopnea. According to HF’s causal model,
high LA (Left Atrial) pressure can directly cause orthop-
nea. Causal accounting thus allows orthopnea, which is
a unmatched problem finding, to be added to the diag-
nostic unit as an effect of high LA pressure.

Causal accounting can efficiently increase the usabil-
ity of diagnostic units in problem solving. The depth
of causality examined by causal accounting is limited to
direct causal dependencies, however, in order to avoid
a costly complete propagation of new evidence impact
throughout the entire network. In this regard, causal
accounting can be considered as a one-step lookahead
version of a more general accounting principle. By doing
so, causal accounting trades accuracy for computational
efficiency.

Deep matching adaptation: The evidence-grouping
process uses deep matching adaptation to find relevant
diagnostic units. Deep matching adaptation tailors a di-
agnostic unit to a particular case in two ways — by apply-
ing causal accounting to add unmatched problem findings
to the diagnostic unit and by removing unmatched unit
findings from the diagnostic unit. The algorithm for deep
matching adaptation can be summarized as follows: For
a diagnostic unit, 1) make a copy of the diagnostic unit,
2) for each unmatched finding f in the diagnostic prob-
lem, if f can be explained by causal accounting, then

add to the copy a node n that represents f and a direct
causal link to n from the corresponding accounting state,
3) remove all unmatched findings in the diagnostic unit
from the copy, and then 4) return the modified copy.
The evidence-grouping process applies deep matching
adaptation to each diagnostic unit that exists in Kjys.

4.2 Hypothesis-Construction Process

The hypothesis-construction process generates a solution
to the original problem by combining the adapted di-
agnostic units chosen by the evidence-grouping process.
Note that each diagnostic unit returned by the evidence-
grouping process is adapted to explain some subset of
the given finding set. As a consequence, any combina-
tion of adapted diagnostic units can be an explanation
for all of the given findings if the union of adapted di-
agnostic units in the combination is equal to the given
finding set. The issue is how to find a combination which
results in the most likely causal explanation. The prob-
lem is that not all adapted diagnostic unit selected by
the evidence-grouping process are ones that are part of a
correct diagnosis. Some of the adapted diagnostic units
are, in fact, falsely chosen as relevant ones. This re-
search calls a diagnostic unit which is part of a cor-
rect diagnosis a true positive unit, and a diagnostic unit
which is not a part of correct diagnosis but falsely cho-
sen a false positive unit. Unfortunately, during testing,
the evidence-grouping process returned many diagnostic
units, and most of them were false positive: More specif-
ically, the evidence-grouping process returned an average
of 66 adapted diagnostic units, and over 90 how to pick
“correctly” true positive units from the output of the
evidence-grouping process.

Specificity-Reflected Similarity Metric: A common
picking method is to count the number of matching find-
ings, and then pick the units with the largest number.
This method, called a “simple similarity metric” in this
research, is easy to implement. Not all matching findings
in an adapted diagnostic unit are, however, of the same
kind. Some findings are included because they match
on the surface. This research calls such matching find-
ings syntactically matching finding. Some findings are
included, for they are considered to be matching findings
by causal accounting. This research calls such matching
findings causally matching findings.

In causal accounting, causally matching findings are
added to an adapted diagnostic unit, but their impact is
not fully propagated. As a result, it is unknown how
strongly these causally matching findings support the
existence of the diagnostic unit, while for syntactically
matching findings, it is indicated by previous experience
that they strongly do. This research investigates a simi-
larity metric, called specificity-reflected similarity metric,
to take this difference into account.

The specificity-reflected similarity metric is motivated
by the observation that some findings do better than oth-
ers in identifying the existence of a disorder. Findings in
a diagnostic unit are divided into two groups: specific
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findings and non-specific findings. Specific findings of a
diagnostic unit are findings that play a significant role in
identifying the existence of the diagnostic unit, and non-
specific findings are the remaining findings. The “playing
a significant role” clause is implemented via a comparison
of the specificity attached to each finding in a diagnostic
unit with a threshold. The specificity of a finding repre-
sents a level of the significance of a finding in identifying a
particular disorder and the underlying pathophysiologic
mechanism. HF is capable of providing specificities that
range between 0 and 1, which the knowledge incorpo-
ration process of HYDI remembers for each finding in a
diagnostic unit. The remembered specificity of a finding
in a diagnostic unit is compared with a threshold, to de-
termine if the finding can be considered to be specific.
During testing, a finding in a diagnostic unit with the
specificity higher than 0.8 was considered as a specific
finding of the diagnostic unit.!

Unlike the simple similarity metric, the specificity-
reflected similarity metric uses three measures: the num-
ber of matching specific findings, the total number of
matching findings, and frequency with which a diagnostic
unit has occurred so far. The specificity-reflected similar-
ity metric determines ranks of adapted diagnostic units
as follows: For any two adapted diagnostic units, the one
with the larger number of matching specific findings gets
higher rank. In case of a tie, the one with the larger
total number of matching findings gets higher rank. In
case of a tie, the one that has occurred more commonly
gets higher rank.

Dependency-Guided Picking Method: If the
adapted diagnostic unit picked by the specificity-reflected
similarity metric does not explain all of the given find-
ings, other adapted diagnostic units need to be chosen
to account for the unexplained findings. A common ap-
proach is to choose these units based on the disorder
independence assumption. In most medical domains,
however, disorders are not always independent of each
other. In light of such dependency between disorders,
this research uses dependencies between diagnostic units
to guide the picking process. Basically, additional units
are chosen by applying the specificity-reflected similarity
metric to adapted diagnostic units which have causal or
non-causal relation links to the adapted diagnostic units
which have already been picked. If there are no such
adapted diagnostic units, all remaining adapted diagnos-
tic units are considered. This picking process is repeated
until all of the given findings are explained.

5 Empirical Analysis

This section presents an experiment conducted to test the
efficiency and effectiveness of the techniques developed in
this paper, by implementing HYDI.

1In order to determine a threshold value, a test was con-
ducted to learn the threshold which gives the best outcome in
identifying diagnostic units. The test showed that the thresh-
old of 0.8 produced the best outcome.

The data set used for the empirical analysis consisted
of 300 cardiac patients, from The New England Medi-
cal Center Hospital. In order to reduce bias due to case
ordering, 50 independent trials were conducted on 50 dif-
ferent random case orderings, and their results were av-
eraged together. In each trial, no diagnostic units were
known in advance, and all 300 patients were run. Each
time a diagnostic problem was solved, a diagnostic solu-
tion was incorporated into K,s which was, in turn, used
in the next diagnosis.

Diagnostic performance was measured along the di-
mensions of accuracy and running time. In particular,
accuracy was measured in terms of true-positive account-
ability and false-positive rate. True-positive accountabil-
ity is the percentage of given findings explained by true
positives in a diagnostic solution. False-positive rate is
the percentage of diagnostic units in a diagnostic solution
that are false positives. Running time was measured on

a SUN SPARC Station 2.

5.1 Diagnostic Performance of HYDI

HyD1 used HF as its causal-model-based solver. For
HyYDI’s association-based solver, decompositional abduc-
tive diagnosis (for expository convenience, called DAD)
was implemented that selects relevant diagnostic units
based on deep matching adaptation, and constructs a
diagnostic solution by applying the specificity-reflected
similarity metric and the dependency-guided picking
method. Detailed algorithms for bAD can be found in [4].

Hyp1 performs hybrid reasoning to solve diagnostic
problems. The central idea of hybrid reasoning is that for
a diagnostic problem, DAD is first performed to solve the
problem; if a diagnostic solution generated by DAD is not
acceptable, then HF is called to solve the problem. Two
strategies for determining whether or not a diagnostic
solution generated by DAD is acceptable were considered.
One strategy is to accept a causal explanation generated
by DAD if the explanation can account for all the findings
in the problem. This strategy was implemented in HyDI; .
The other strategy is to accept a causal explanation if the
explanation not only can explain all the findings in the
problem, but also is “close to a correct diagnosis.” The
“close to a correct diagnosis” clause was implemented
as a comparison of true-positive accountability with a
threshold. During testing, 88%, which is the average
true-positive accountability achieved by Hyp1;, was used
as the threshold value. This strategy was implemented
in HyDI.

Table 1 summarizes average percentage of findings in
a diagnostic problem that are explained by a diagnostic
solution. Unlike the three other systems, DAD was able to
explain only an average of 89% of findings in a diagnostic
problem. This empirically verifies that the association-
based DAD is less robust than the other systems.

Table 2 summarizes the results of the experiment, in
terms of average accuracy and running time. During
evaluation, the most likely causal explanations gener-
ated by HF were assumed to be “correct” diagnoses. In
other words, HF has 0 false-positive rate and 100% true-
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A diagnostic Average % of findings
solution S | explained by S
nerated by DAD 88.9%
enerated by Hr 100%
enerated by HYDI; 100%
enerated by HYDI 100%

Table 1: Average percentage of findings explained

positive accountability. The experiment shows that a
diagnostic solution generated by HF consisted of an av-
erage of 8 diagnostic units, but with only around 40% of
them being ones that had been seen previously.

System || Accuracy Avg. Running I
|| Avg. TPA | Avg. FPR Time (o)
HF || _100% 0 52.3 sec (138.2 sec)
DAD 81.0% 13.1% 3.7 sec (12.2 sec
_H_H_vm, 88.1% 10.9% 4.0 sec (13.6 sec
— Hyp1 || 96.8% 4.3% 17.7 sec (43.1 sec

Table 2: Average accuracy and running time

As summarized in Table 2, the experiment indicates
that HYDI achieved an average of 96.8% true-positive ac-
countability and 4.3% false-positive rate. This result may
appear disappointing, but in fact is remarkably good,
given the fact that most of the problem solving in Hyp1
was done by As (which based its problem solving on pre-
vious experience), and the fact that similar cases oc-
curred infrequently (only an average of 40% of the di-
agnostic units in a solution were seen previously). The
results shown in the table also empirically suggest that
attractive tradeoffs between accuracy and efficiency can
be achieved. In particular, compared with HF, HYD1 was
able to achieve a 300% increase in speed, at only a 3%
decrease in accuracy. HYDI also shows a smaller standard
deviation in running time than HF.

Finally, the experiment shows that as experience was
accumulated, CMs was called less frequently for diagnosis.
In Hyp1, after an average of 27 cases, DAD was gener-
ally able to find some diagnostic solutions that explain
all the findings. In HYDI, even though cMs was called
more frequently than in HYDI, it was still called less as
experience was gathered.

6 Concluding Remarks

This paper described a framework, called the diagnostic-
unit representation, for structuring diagnostically crit-
ical knowledge as graphs. It also described possible
strategies for incrementally acquiring such graphs by an-
alyzing the results of diagnoses with respect to disor-
ders. In addition, this paper explored the following new
techniques for decompositional abductive diagnosis; deep
matching adaptation to find relevant diagnostic units, the
specificity-reflected similarity metric to determine a level
of relevance of a diagnostic unit, and a picking method
which uses dependencies between disorders.

As empirically demonstrated, the diagnostic-unit rep-
resentation appears to be an effective way of capturing
domain decomposability, thereby facilitating one’s under-
standing of the structure of a problem, and allowing de-
compositional abductive diagnosis to be done efficiently

and effectively. Inappropriate use of knowledge can ad-
versely affect overall diagnostic performance. Empirical
results demonstrates that the techniques developed for
using diagnostic units are effective, especially when sim-
ilar cases rarely occur.

Currently, the knowledge incorporation component of
HyDI does not use failures to learn. HYDI could be ex-
tended to address issues such as how failures can be used
to change the structure of existing knowledge.
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